Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: covidwho-2216326

ABSTRACT

Host-directed therapies are emerging as a promising tool in the curing of difficult-to-treat infections, such as those caused by drug-resistant bacteria. In this study, we aim to test the potential activity of the FDA- and EMA-approved drugs cysteamine and cystamine against Mycobacterium abscessus. In human macrophages (differentiated THP-1 cells), these drugs restricted M. abscessus growth similar to that achieved by amikacin. Here, we use the human ex vivo granuloma-like structures (GLS) model of infection with the M. abscessus rough (MAB-R) and smooth (MAB-S) variants to study the activity of new therapies against M. abscessus. We demonstrate that cysteamine and cystamine show a decrease in the number of total GLSs per well in the MAB-S and MAB-R infected human peripheral blood mononuclear cells (PBMCs). Furthermore, combined administration of cysteamine or cystamine with amikacin resulted in enhanced activity against the two M. abscessus morpho variants compared to treatment with amikacin only. Treatment with cysteamine and cystamine was more effective in reducing GLS size and bacterial load during MAB-S infection compared with MAB-R infection. Moreover, treatment with these two drugs drastically quenched the exuberant proinflammatory response triggered by the MAB-R variant. These findings showing the activity of cysteamine and cystamine against the R and S M. abscessus morphotypes support the use of these drugs as novel host-directed therapies against M. abscessus infections.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cysteamine/pharmacology , Cysteamine/therapeutic use , Cystamine/pharmacology , Cystamine/therapeutic use , Leukocytes, Mononuclear , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Microbial Sensitivity Tests
2.
Int J Mycobacteriol ; 11(4): 415-422, 2022.
Article in English | MEDLINE | ID: covidwho-2163900

ABSTRACT

Background: Recent pandemic of coronavirus SARS-CoV-2 (COVID-19) caused limitations in the country's strategies to fight against mycobacterial infections. The aim of this study was to compare the suspected tuberculosis (TB) pulmonary patients before and during the COVID-19 pandemic (January 2018-December 2021) who were referred to the National Reference TB Laboratory (NRL TB), Tehran, Iran. The mycobacterial isolated strains were identified and compared with previous data. Methods: A total of 16,899 clinical samples collected from 7041 suspected pulmonary TB patients were received from 2018 to 2021. Primary isolation of Mycobacterium isolates was done on Löwenstein-Jensen medium. Then, the DNA was extracted from acid-fast bacillus culture-positive samples and identification was performed by IS6110, Hsp65, and 16S-23S rRNA genes using polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism, and nested PCR methods. Results: A total of 11679 specimens (69.1%) from 4866 suspected TB patients were collected in 2018-2019 and 5220 specimens (30.8%; from 2175 patients) in 2020-2021. Out of 11679 specimens, 2046 samples that belong to 852 patients were infected with Mycobacterium tuberculosis, and the remaining were non-TB Mycobacterium (NTM) species (n = 244) isolated from 102 patients. The cultures for 12894 specimens were either negative (76.3%) or contaminated (845/16899; 5%). A comparison of the total number of patients who were referred for diagnosis and treatment (954/666 patients, P > 0.05) showed a 30.1% reduction during the COVID-19 pandemic. Although, with these low number of patients, the significant increases of NTM species (P < 0.05) among suspected TB pulmonary patients were observed. Besides, new species of NTM, for example, Mycobacterium peregrinum and Mycobacterium montefiorense, were detected. For the past 20 years, these two species were not reported from pulmonary patients in Iran. Conclusions: During the pandemic of COVID-19, the TB diagnosis network became irregular, as a consequence, many patients could not reach the treatment center, and this could increase the circulation of mycobacterial diseases (TB and NTM). The study shows the emergence of new opportunistic NTM species also.


Subject(s)
COVID-19 , Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium Infections, Nontuberculous/microbiology , Pandemics , COVID-19/epidemiology , SARS-CoV-2/genetics , Iran/epidemiology , Nontuberculous Mycobacteria , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/microbiology , RNA, Ribosomal, 16S/genetics
4.
J Korean Med Sci ; 37(32): e250, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1993761

ABSTRACT

The aim of our study was to investigate the incidence of and risk factors for coronavirus disease 2019 (COVID-19) in patients with non-tuberculous mycobacterial-pulmonary disease (NTM-PD). A total of 3,866 patients with NTM-PD were retrospectively identified from a single center. Compared to the general population of Korea, patients with NTM-PD had a substantially increased age-standardized incidence of COVID-19 from January 2020 to February 2021 (2.1% vs. 0.2%). The odds of being infected with COVID-19 was particularly higher in patients who received treatment for NTM-PD than in those who did not receive treatment for NTM-PD (adjusted odd ratio = 1.99, 95% confidence interval = 1.09-3.64, P = 0.026). Patients with NTM-PD might be regarded as a high-risk group for COVID-19 and may need a more proactive preventive strategy for COVID-19 and other pandemics in the future.


Subject(s)
COVID-19 , Lung Diseases , Mycobacterium Infections, Nontuberculous , COVID-19/epidemiology , Humans , Incidence , Lung Diseases/epidemiology , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Republic of Korea/epidemiology , Retrospective Studies
5.
Emerg Infect Dis ; 28(3): 752-753, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1725319

ABSTRACT

Although human infections caused by Mycobacterium mageritense are rare, there are some case reports involving sinusitis, pneumonia, and hospital-acquired infections in adults. We report a case of lymphadenitis caused by M. mageritense in a child in Spain.


Subject(s)
Lymphadenitis , Mycobacteriaceae , Mycobacterium Infections, Nontuberculous , Mycobacterium Infections , Pneumonia , Adult , Child , Family , Humans , Lymphadenitis/diagnosis , Lymphadenitis/microbiology , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology
6.
Paediatr Respir Rev ; 36: 57-64, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-935867

ABSTRACT

The Bacille Calmette Guérin (BCG) vaccine was developed over a century ago and has become one of the most used vaccines without undergoing a modern vaccine development life cycle. Despite this, the vaccine has protected many millions from severe and disseminated forms of tuberculosis (TB). In addition, BCG has cross-mycobacterial effects against non-tuberculous mycobacteria and off-target (also called non-specific or heterologous) effects against other infections and diseases. More recently, BCG's effects on innate immunity suggest it might improve the immune response against viral respiratory infections including SARS-CoV-2. New TB vaccines, developed over the last 30 years, show promise, particularly in prevention of progression to disease from TB infection in young adults. The role of BCG in the context of new TB vaccines remains uncertain as most participants included in trials have been previously BCG immunised. BCG replacement vaccines are in efficacy trials and these may also have off-target effects.


Subject(s)
Adjuvants, Immunologic/therapeutic use , BCG Vaccine/therapeutic use , Cross Protection/immunology , Immunity, Heterologous/immunology , Mycobacterium Infections, Nontuberculous/prevention & control , Tuberculosis Vaccines/therapeutic use , Tuberculosis/prevention & control , BCG Vaccine/immunology , Buruli Ulcer/microbiology , Buruli Ulcer/prevention & control , COVID-19/prevention & control , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/immunology , Humans , Hypersensitivity/epidemiology , Hypersensitivity/immunology , Infant , Infant Mortality , Leprosy/microbiology , Leprosy/prevention & control , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/immunology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Tuberculosis Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL